
The Boundary Forest Algorithm

With Charles Mathy, Nate Derbinsky, José Bento and Jonathan Rosenthal

Jonathan Yedidia
Director of AI Research, Analog Devices

Director of the Algorithmic Systems Group, Analog Garage

• Classification: given a query, return a label

• Regression: given a query, return a number or a vector

• Retrieval: given a query, return a similar example

Three types of learning problems:

Two settings:

• Off-line: entire training set available before any queries

• On-line: training and querying are inter-mixed

Desirable Features for
Learning Algorithms

• Low error on previously unseen queries (good generalization)

• Very fast processing of training examples and test queries

• On-line learning with no error on most recent training example

• Can easily achieve zero error on training set in offline setting

• Able to absorb and learn from unlimited training examples:
query time and memory only grow slowly with more training

• Can learn and represent complex functions—no intrinsic limits
in the kind of functions it can learn

• Easy to understand how and why it works

The Boundary Forest (BF)
• Satisfies all these properties with the caveat that you must

provide a distance function between examples

• Uses a collection of trees called “Boundary Trees,” whose nodes
are previously seen points x with label or vector C(x)

• When queried with a point y, each tree quickly outputs an
approximate nearest neighbor to y from the training examples

• Set of ANNs can be used for classification or regression
(Shepard weighting) or retrieval (closest ones)

• Built online, one point at a time

• Gives similar or better error rate compared to other
Approximate Nearest Neighbor methods, while being online and
fast to train and query

Testing and training
• Nodes have associated class (color)

• Start at root, look for child closest to test point

• Go to that child, recurse until you find locally closest node

• For queries, class of locally closest node is the prediction

• For training, add node and edge if prediction is incorrect

Root Test point

Root Test point

Testing and training
• Nodes have associated class (color)

• Start at root, look for child closest to test point

• Go to that child, recurse until you find locally closest node

• For queries, class of locally closest node is the prediction

• For training, add node and edge if prediction is incorrect

Root Test point

Testing and training
• Nodes have associated class (color)

• Start at root, look for child closest to test point

• Go to that child, recurse until you find locally closest node

• For queries, class of locally closest node is the prediction

• For training, add node and edge if prediction is incorrect

Root Test point

Testing and training
• Nodes have associated class (color)

• Start at root, look for child closest to test point

• Go to that child, recurse until you find locally closest node

• For queries, class of locally closest node is the prediction

• For training, add node and edge if prediction is incorrect

Root Test point
Predicted

class
yellow

Testing and training
• Nodes have associated class (color)

• Start at root, look for child closest to test point

• Go to that child, recurse until you find locally closest node

• For queries, class of locally closest node is the prediction

• For training, add node and edge if prediction is incorrect

Root
Training point

added
Predicted

class
yellow

Testing and training
• Nodes have associated class (color)

• Start at root, look for child closest to test point

• Go to that child, recurse until you find locally closest node

• For queries, class of locally closest node is the prediction

• For training, add node and edge if prediction is incorrect

Root
Training point

not added
Predicted

class
yellow

Testing and training
• Nodes have associated class (color)

• Start at root, look for child closest to test point

• Go to that child, recurse until you find locally closest node

• For queries, class of locally closest node is the prediction

• For training, add node and edge if prediction is incorrect

Toy world
• Points come in one at a time with associated class (color)

Toy world
• Points come in one at a time with associated class (color)

• First point becomes root node

 Boundary Tree Querying BT everywhere

Toy world
• Points come in one at a time with associated class

• First point becomes root node

• Greedy traversal of tree, class of result is prediction

• If prediction is incorrect, training point and edge is added

 Boundary Tree Querying BT everywhere

Toy world
• Points come in one at a time with associated class

• First point becomes root node

• Greedy traversal of tree, class of result is prediction

• If prediction is incorrect, training point and edge is added

 Boundary Tree Querying BT everywhere

Toy world
• Points come in one at a time with associated class

• First point becomes root node

• Greedy traversal of tree, class of result is prediction

• If prediction is incorrect, training point and edge is added

 Boundary Tree Querying BT everywhere

Toy world
• Points come in one at a time with associated class

• First point becomes root node

• Greedy traversal of tree, class of result is prediction

• If prediction is incorrect, training point and edge is added

 Boundary Tree Querying BT everywhere

Toy world
• Points come in one at a time with associated class

• First point becomes root node

• Greedy traversal of tree, class of result is prediction

• If prediction is incorrect, training point and edge is added

 Boundary Tree Querying BT everywhere

• Points come in one at a time with associated class

• First point becomes root node

• Greedy traversal of tree, class of result is prediction

• If prediction is incorrect, training point and edge is added

• After showing 10,000 points, 680 points stored

 Boundary Tree Querying BT everywhere

Toy world

Toy world
• Points come in one at a time with associated class

• First point becomes root node

• Greedy traversal of tree, class of result is prediction

• If prediction is incorrect, training point and edge is added

• After showing 100,000 points, 2220 points stored

 Boundary Tree Querying BT everywhere

Toy world
• Points come in one at a time with associated class

• First point becomes root node

• Greedy traversal of tree, class of result is prediction

• If prediction is incorrect, training point and edge is added

• Forest of trees - differently seeded - better generalization

Shown 10,000 points

Other applications
• Regression

 Ground truth BT: 395 nodes after
 seeing 10,000 samples

• Retrieval: add all points

MNIST
• MNIST : 60,000 labeled handwritten digits for training, 10,000 for testing

(784 pixels)

• K Nearest Neighbor with Euclidean L2 distance : 97.2% accuracy (3-NN)

• Forest of 50 Boundary Trees : 97.8%

• Training on full MNIST with 4 cores in 37 seconds in Java

• Testing on 10,000 samples in 9 seconds. 3-NN takes an hour.

• Better metric : HOG (Histogram of Gradients). Gets 98.9% accuracy. 3-
NN : 98.6%

General Performance
• Gives good performance on wide variety of data sets (see

our paper for comparison with a variety of other
algorithms on a variety of benchmark problems).

• Querying or training a single example only takes log N
time, where N is the amount of stored (!) data. (This
requires a simple modification to what was presented so
far: maximum number of children per node k)

• Has the ability to learn, in an online fashion, from a huge
number of training examples.

• Responds to queries correctly immediately after training
on them, and it’s easy to drive training error to zero.

References
Mathy, C.; Derbinsky, N.; Bento. J; Rosenthal, J.; Yedidia, J.S., “The Boundary Forest Algorithm
for Online Supervised and Unsupervised Learning,” AAAI 2015.

References
Zoran, D.; Lakshminarayanan, B.; Blundell, C. “Learning Deep Nearest Neighbor
Representations Using Differentiable Boundary Trees,” ArXiv 2017

See also Wu, H.; Wang, C.; Yin, J.; Lu, K.; Zhu, L.
“Interpreting Shared Deep Learning Models via
Explicable Boundary Trees,” ArXiv 2017

Summary
• The Boundary Forest is a new algorithm for online

classification, regression and retrieval

• Can be thought of as fast online nearest neighbor
algorithm

• Fast both at training and testing time

• Memory and computation time grow slowly, so can
deal with huge numbers of training examples

• Easy to implement and performs better than other
approximate nearest neighbor online algorithms

• Biggest issue is need for a good metric on examples.

