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Adversarial Learning 

How to design classifiers that are robust 
to adversarial examples?



Classification

Traffic sign images Which sign

STOP

Speed Limit

YIELD



How to do Classification

Image, 
Annotation

Feature 
Vector 

(X)

STOP

Label 

(Y)

22,



How to do Classification

Given labeled training examples (x1, y1), …. (xn, yn),  
Find a prediction rule f to predict y from x
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How to do Classification

Given labeled training examples (x1, y1), …. (xn, yn),  
Find a prediction rule f to predict y from x

Key: Generalization (f should work on test 
examples coming from an underlying distribution)
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Adversarial Examples 
[ML05, S+13, G+14]



Threat Model

Learner:  Builds a classifier from training data
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Threat Model

Learner:  Builds a classifier from training data

User:  Uses a classifier

Adversary:  Wants to make user misclassify by 
perturbing test examples



Many classifiers are vulnerable to 
adversarial examples …

[G+14]



Many classifiers are vulnerable to 
adversarial examples …

[P+16]



Adversarial Examples - State of the Art

- Many many attacks

- Many defenses, to be broken again by other attacks
- Only defense that has (sort of) held up - training using 
adversarial examples



Adversarial Examples - State of the Art

- Many many attacks

- Many defenses, to be broken again by other attacks

- Not much understanding on why these examples exist

- Only defense that has (sort of) held up so far - training 
using adversarial examples



Talk Outline

Adversarial Examples

- Background

- Definitions
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Distributional 
Robustness

Finite Sample
Robustness

Algorithmic
Robustness

Why do we have adversarial examples?

(bias)

(variance)



Definitions



Robustness Radius

+

-

f

x

Robustness Radius            of a classifier f at x is 
 the distance to closest z such that

f(x) 6= f(z)
⇢(f, x)

High robustness radius at x means classifier robust at x



Robustness wrt Distribution
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f

x

R(f, r, µ) = Pr
x⇠µ

({x|⇢(f, x) � r})

Robustness of f at x at radius r wrt distribution µ

High robustness means robust classifier
µ = distribution over input instances



Robustness Definitions

Algorithm ATraining data
Sn

Classifier
A(Sn)



Robustness Definitions

Distributional robustness of A wrt D at radius r is

Dx = marginal of data distribution D over x

lim
n!1

E
Sn⇠D

[R(A(S
n

), r,D
x

)]

Algorithm ATraining data
Sn

Classifier
A(Sn)



Robustness Definitions

Distributional robustness of A wrt D at radius r is

Dx = marginal of data distribution D over x

lim
n!1

E
Sn⇠D

[R(A(S
n

), r,D
x

)]

Finite sample robustness of A wrt D at radius r bounds
E
Sn⇠D

[R(A(S
n

), r,D
x

)] for finite n

Algorithm ATraining data
Sn

Classifier
A(Sn)
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How to analyze robustness  
to adversarial examples?

Our work - analysis for nearest neighbors



Nearest Neighbor Classifiers

Given training data (x1, y1),…, (xn, yn), test example x,

find xi in training data closest to x.  Return yi.

x



k-Nearest Neighbor Classifiers

Given training data (x1, y1),…, (xn, yn), test example x,
find k closest points xi1, .., xik. Return majority(yi1,..,yik).

x



What is known about  
Nearest Neighbors?

Bayes optimal classifier g:

Let R* = expected error of Bayes optimal classifier g 

g(x) = 2I(p(y = +|x) � 1/2)� 1



What is known about  
Nearest Neighbors?

Bayes optimal classifier g:

Let R* = expected error of Bayes optimal classifier g 

Finite sample rates: highly distribution dependent

Asymptotic [CH67, DGL96]:

Error of 1-NN  2R*(1 - R*)

Error of k-NN  R*

n ! 1

n ! 1, kn ! 1, kn/n ! 0

as

as

g(x) = 2I(p(y = +|x) � 1/2)� 1



What about robustness  
of nearest neighbors?



Robustness of 1-Nearest Neighbor

A1(Sn) = 1-Nearest Neighbor classifier on training set Sn

Theorem: If, in some neighborhood of x,
- Dx is absolutely continuous
- p(y=+|x) is continuous
- 0 < p(y=+|x) < 1              (impure region)

then                             as n ! 1
⇢(A1(Sn), x) ! 0



Robustness of 1-Nearest Neighbor

A1(Sn) = 1-Nearest Neighbor classifier on training set Sn

Distributional robustness of NN in “impure” regions is 0
Accuracy is non-zero!

Theorem: If, in some neighborhood of x,
- Dx is absolutely continuous
- p(y=+|x) is continuous
- 0 < p(y=+|x) < 1              (impure region)

then                             as n ! 1
⇢(A1(Sn), x) ! 0



Proof Ideas

x

min(r/2, diam(nbd(x))

B

Theorem: If, in some neighborhood of x,
- Dx is absolutely continuous
- p(y=+|x) is continuous
- 0 < p(y=+|x) < 1

then                             as n ! 1
⇢(A1(Sn), x) ! 0



Proof Ideas

x

min(r/2, diam(nbd(x))

For large enough n, there are at least two 
points u, v with different labels in B

B

u

v

Theorem: If, in some neighborhood of x,
- Dx is absolutely continuous
- p(y=+|x) is continuous
- 0 < p(y=+|x) < 1

then                             as n ! 1
⇢(A1(Sn), x) ! 0



Proof Ideas

x

min(r/2, diam(nbd(x))

For large enough n, there are at least two 
points u, v with different labels in B

B One of them is adversarial example for x

u

v

Theorem: If, in some neighborhood of x,
- Dx is absolutely continuous
- p(y=+|x) is continuous
- 0 < p(y=+|x) < 1

then                             as n ! 1
⇢(A1(Sn), x) ! 0



Robustness of k-Nearest Neighbor

Ak(Sn) = k-Nearest Neighbor classifier on training set Sn

Theorem: If, in some neighborhood of x,
- Dx is absolutely continuous
- p(y=+|x) is continuous      
- 0 < p(y=+|x) < 1          (impure region)

then                             as n ! 1
⇢(Ak(Sn), x) ! 0



Robustness of k-Nearest Neighbor

Ak(Sn) = k-Nearest Neighbor classifier on training set Sn

k-NN does not help!
(unlike accuracy where kNN is better than 1NN)

Theorem: If, in some neighborhood of x,
- Dx is absolutely continuous
- p(y=+|x) is continuous
- 0 < p(y=+|x) < 1          (impure region)

then                             as n ! 1
⇢(Ak(Sn), x) ! 0



Interiors

1-NN has non-zero robustness radius in the  
interiors of the + and - regions

+

t

-

t

t-interior of + region = all x s.t B(x, t) has p(y=+|x) = 1 
t-interior of - region = all x s.t B(x, t) has p(y=-|x) = 1 



Robustness Bounds

Let Xt = (t-interior of + region) U (t-interior of - region) 

Theorem: 
E[R(A(S

n

), r,D
x

)] � P (X2r+t

)� d
t,n

where d

t,n

= E
x0⇠D

x

[(1� P (B(x0, t)))
n]

1. dt,n = distribution dependent quantity
For continuous Dx, fixed t, goes to 0 with large enough n

2. X2r+t goes to X2r as t goes to 0



NN is non-robust in “impure” regions

Summary: Robustness of NN

NN is robust in the interior of “pure” regions

What happens in between depends on data distribution

+

t

-

t
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When is NN robust?

Let g(x) = the Bayes optimal classifier

Theorem: If there is a training point (x0, y0) s.t. if
(a) g(x) = y0 

(b) For all (xi, yi) in training set with                 implies:

d(x0, xi) > 2r + 2d(x, x0)

then NN has robustness radius at least r at x.

Robust if differently labeled points are far apart

x0
xi

x

yi 6= g(x)



Algorithm Idea

- Remove a subset of training data s.t differently 
labeled points are far apart

- Do NN on the remaining data

Which points to remove?
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Algorithm

r-separated set:
Set of points (x1, y1),…(xm, ym) s.t

kxi � xjk  r =) yi = yj

t-Cover induced by a set S:
Cov(S, t) = Ux in S B(x, t)

Main Idea:  For robustness radius r,  keep the r-separated
subset S of the training set with max Pr(Cov(S, 2r + t))

Estimate Pr(Cov(S, 2r + t)) with extra unlabeled dataset



An Example of how this helps

Distributional Robustness of NN = 0  (impure region)

Distributional Robustness of Robust-NN = 1

(70% +, 30% -)



Performance Guarantees: Definitions

A1R(S) = Robust 1NN classifier on training data S

Vmax(t) = t-separated set V wrt Bayes Optimal classifier with
largest Pr(V)

if for x and z in S,

t-separated set wrt Bayes Optimal classifier:

A set of points S are t-separated wrt Bayes Optimal classifier g
kx� zk  t =) g(x) = g(z)



Performance Guarantees

A1R(S) = Robust 1NN classifier on training data S

E[R(A
1R

(S
n

), r,D
x

)] � Pr(V
max

(2r + 2t))� [2� + ✏(n,m, �) + c
t,n

]

Theorem:

where: 
✏(n,m, �) ! 0 m,n ! 1as (m = #unlabeled pts)
ct,n ! 0 as n ! 1

A little better than NN

Open Question: Can the rates be improved?
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- Background
- Definitions
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- Defense
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Recall: Algorithm

r-separated set:
Set of points (x1, y1),…(xm, ym) s.t

kxi � xjk  r =) yi = yj

t-Cover induced by a set S:
Cov(S, t) = Ux in S B(x, t)

Main Idea:  For robustness radius r,  keep the r-separated
subset S of the training set with max Pr(Cov(S, 2r + t))

Estimate Pr(Cov(S, 2r + t)) with extra unlabeled dataset



Algorithm in Practice

In practice:
— extra unlabeled data usually unavailable
— hard to find r-separated set with max Pr(Cov(S, 2r + t))
— choosing t is challenging

So, pick largest r-separated subset of training set to keep

For 2 labels, reduces to max matching in bipartite graph
(for higher labels, reduces to min vertex cover)



Methodology - White Box Attacks

Attack Method:  Given x and radius r, 

Find x’ closest to x with label different from y

Return xa = x+ r

x� x

0

kx� x

0k

y = label of x assigned by NN

r
xx’

xa

Baselines:  StdNN, RobustNN,  AdversariallyTrainedNN



Results

Datasets (clockwise):

Abalone, Halfmoon, MNIST1v7



Methodology - Black Box Attacks

Baselines:  StdNN, RobustNN,  AdversariallyTrainedNN

Attack Method [P+17]:  Given x and radius r, 

Train a substitute classifier f by querying the NN 
classifier as an oracle

Find adversarial example for f around x

Classifiers used: NeuralNet, Kernel



Results - Kernel

Datasets (clockwise):

Abalone, Halfmoon, MNIST1v7



Results - Neural Nets

Datasets (clockwise):

Abalone, Halfmoon, MNIST1v7



Conclusions

— We provide new definitions for distributional and 
finite sample robustness

— Analyze the robustness of nearest neighbors

— Analysis leads to a new defense
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