How to stop worrying and learn to love Nearest Neighbors

Alexei (Alyosha) Efros UC Berkeley

The Tyranny of "Elegant" ideas

"For every complex problem there is an answer that is clear, simple, and wrong."

-- H. L. Mencken

How do humans see 3D?

3D world

2D image

Point of observation

Emission Theory of Vision

Eyes send out "feeling rays" into the world

Supported by:

- Empedocles
- Plato
- Euclid (kinda)
- Ptolemy
 - ..
- 50% of US college students*

*http://www.ncbi.nlm.nih.gov/pubmed/12094435?dopt=Abstract

Our Scientific Narcissism

All things being equal, we prefer to credit our own cleverness

We prefer algorithms to data

Features

Algorithm

Face Detection: Big Success Story

- Rowley, Baluja, and Kanade, 1998
 - features: pixels, classifier: neural network
- Schniderman & Kanade, 1999
 - features: pairs of wavelet coeff., classifier: naïve Bayes
- Viola & Jones, 2001
 - features: haar, classifier: boosted cascade

Learning Spectrum

RIGHT EDGE

LEFT EDGE

Extrapolation problem Interpolation problem Generalization Correspondence ∞ 10⁶ Number of 10⁵ 10 10² 10³ 104 training samples LATE EYE

"Unreasonable Effectiveness of Data"

[Halevy, Norvig, Pereira 2009]

 Parts of our world can be explained by elegant mathematics:

- physics, chemistry, astronomy, etc.

But much cannot:

- psychology, genetics, economics, etc.

Enter: The <u>The Data</u>

- Great advances in several fields:

• e.g. speech recognition, machine translation, vision

Overfitting to the world

- MNIST Digits
 - 10 digits *
 - ~1,000 variations = 10,000
- English words
 - ~100,000 words *
 - ~5 variations = 500,000
- Natural world
 - ~100,000 objects *
 - ~10,000 variations (pose, scale, lighting, intra-category)
 - = 1,000,000,000 (1 billion)
 - Not counting compositionality (will discuss later)

Part 1: Nearest Neighbors aren't that bad!

Lots of Tiny Images

 80 million tiny images: a large dataset for nonparametric object and scene recognition Antonio Torralba, Rob Fergus and William T. Freeman. PAMI 2008.

Lots Of

Images

7,900

A. Torralba, R. Fergus, W.T.Freeman. PAMI 2008

Lots Of

Images

Lots

Of Images

79,000,000

790,000

Target

7,900

a) Input image

b) Neighbors c) Ground truth d) Wordnet voted branches

Automatic Colorization

Grayscale input High resolution

Colorization of input using average

"Size Does Matter"

Given enough data, most things will be close-by even with the dumb distance metrics!

2 Million Flickr Images

Nearest neighbors from a collection of 20 thousand images

Nearest neighbors from a collection of 2 million images

e.g. kNN for image understanding

Label Transfer

Tags: Sky, Water, Beach, Sunny, ... Time: 1pm, August, 2006, ... Location: Italy, Greece, Hawaii ... Photographer: Flickrbug21, Traveller2

im2GPS (using 6 million GPS-tagged Flickr images)

Query Photograph

Im2gps [Hays & Efros, CVPR'08]

6 Million Flickr Images

im2GPS (using 6 million GPS-tagged Flickr images)

Query Photograph

Visually Similar Scenes

Im2gps [Hays & Efros, CVPR'08]

USA

Utah

Arizona

Utah

Utah

Utah

Kenya

Utah

LosAngeles

Utah

NewMexico

Mendoza

Utah

Lazy label transfer

Elevation gradient = 112 m / km

Elevation gradient magnitude ranking

Population density map

Figure 2. Global population density map.

Population density ranking

But surely the brain can't remember this much!?

What's the Capacity of Visual Long Term Memory?

What we know...

Standing (1973) 10,000 images 83% Recognition

... people can remember thousands of images

What we don't know...

... what people are remembering for each item?

According to Standing

"Basically, my recollection is that we just separated the pictures into distinct thematic categories: e.g. cars, animals, singleperson, 2-people, plants, etc.) Only a few slides were selected which fell into each category, and they were visually distinct."

Dogs Playing Cards

"Gist" Only

Sparse Details

Highly Detailed

Slide by Aude Oliva

Massive Memory I: Methods

Showed 14 observers 2500 categorically unique objects

- 1 at a time, 3 seconds each
- 800 ms blank between items
- Study session lasted about 5.5 hours
- Repeat Detection task to maintain focus
- Followed by 300 2-alternative forced choice tests

Slide by Aude Oliva

Massive Memory Experiment I

A stream of objects will be presented on the screen for ~ 3 second each.

Your primary task:

Remember them ALL!

afterwards you will be tested with...

Completely different objects...

Different exemplars of the same kind of object...

Different states of the same object...

Massive Memory Experiment I

Your other task:

Detect exact repeats anywhere in the stream

Examples of State memory test

Recognition Memory Results

Recognition Memory Results

Part 2: Nearest Neighbors as a negative result

Word embeddings

- word2vec
- Matrix factorization
- (normalized) Nearest Neighbors
 - Omer Levy, Yoav Goldberg, "Linguistic regularities in sparse and explicit word representations." CoNLL-2014.

Image captioning

LSTMs

. . .

- Feed-forward CNNs
- Language models

Easy to get fooled

"a car parked on the side of the road"

"a car parked on the side of the road"

"a car parked on the side of the road"

Image captioning

- LSTMs
- Feed-forward CNNs
- Language models

- Nearest neighbors
 - "Language Models for Image Captioning: The Quirks and What Works", Jacob Devlin, Hao Cheng, Hao Fang, Saurabh Gupta, Li Deng, Xiaodong He, Geoffrey Zweig, Margaret Mitchell, ACL 2015

Deformable Part Models

LEFT EDGE

How important are "Deformable Parts" in the Deformable Parts Model?

Santosh K. Divvala, Alexei A. Efros, and Martial Hebert

Robotics Institute, Carnegie Mellon University.

Exemplar-SVMs

Malisiewicz et al, ICCV'11

Showing off correspondences

Malisiewicz et al, ICCV'11

Discriminative Decorrelation for Clustering and Classification^{*}

Bharath Hariharan¹, Jitendra Malik¹, and Deva Ramanan²

 University of California at Berkeley, Berkeley, CA, USA {bharath2,malik}@cs.berkeley.edu
² University of California at Irvine, Irvine, CA, USA dramanan@ics.uci.edu

(c) PCA

(d) LDA

im2GPS (using 6 million GPS-tagged Flickr images)

Query Photograph

Im2gps [Hays & Efros, CVPR'08]

2006 to 2016

PlaNet - Photo Geolocation with Convolutional Neural Networks

Tobias Weyand¹, Ilya Kostrikov², James Philbin³

¹Google, Los Angeles, USA weyand@google.com ²RWTH Aachen University, Aachen, Germany* ilya.kostrikov@rwth-aachen.de ³Zoox, Menlo Park, USA* james@zoox.com

CC-BY-NC by stevekc

CC-BY-NC by edwin.11

(b)

CC-BY-NC by jonathanfh

(c)

Deep Features vs. Data

	Street	City	Region	Country	Continent
Method	1 km	25 km	200 km	750 km	2500 km
Im2GPS (orig) [19]		12.0%	15.0%	23.0%	47.0%
Im2GPS (new) [20]	2.5%	21.9%	32.1%	35.4%	51.9%
PlaNet (900k)	0.4%	3.8%	7.6%	21.6%	43.5%
PlaNet (6.2M)	6.3%	18.1%	30.0%	45.6%	65.8%
PlaNet (91M)	8.4%	24.5%	37.6%	53.6%	71.3%

Exemplar-SVMs

Malisiewicz et al, ICCV'11

Part 3: Nearest Neighbors for category-free understanding

Understanding an Image

H

1 an

A

中华人民

武大团结万岁

興

世

Object naming -> Object categorization

Object categorization

Visual World

Not one-to-one:
 – Much is unnamed

Visual World

• Not one-to-one: –Much is unnamed

Verbs (actions)

Visual "sitting"

Visual World

The Language Bottleneck

words

Scene understanding, spatial reasoning, prediction, image retrieval, image synthesis, etc.

Visual World

Scene understanding, spatial reasoning, prediction, image retrieval, image synthesis, etc.

Why Categorize?

- 1. Knowledge Transfer
- 2. Communication

Classical View of Categories

- Dates back to Plato & Aristotle
 - Categories are defined by a list of properties shared by all elements in a category
 - 2. Category membership is binary
 - 3. Every member in the category is equal

Problems with Classical View

• Humans don't do this!

- People don't rely on abstract definitions / lists of shared properties (Wittgenstein 1953, Rosch 1973)
 - e.g. define the properties shared by all "games"
 - e.g. are curtains furniture? Are olives fruit?
- Typicality
 - e.g. Chicken -> bird, but bird -> eagle, pigeon, etc.
- Language-dependent
 - e.g. "Women, Fire, and Dangerous Things" category is Australian aboriginal language (Lakoff 1987)
- Doesn't work even in human-defined domains
 - e.g. Is Pluto a planet?

Solution: hierarchy?

Ontologies, hierarchies, levels of categories (Rosch), etc. WordNet, ImageNet, etc etc

Still Problematic!

- Intransitivity
 - e.g. car seat is chair, chair is furniture, but ...
- Multiple category membership
 - it's not a tree, it's a forest!

Clay Shirky, "Ontologies are Overrated"

Fundamental Problem with Categorization

Making decisions too early!

Why not only categorize at run-time, once we know the task!

The Dictatorship of Librarians

categories are losing...

On-the-fly Categorization?

- 1. Knowledge Transfer
- 2. Communication

Association instead of categorization

Ask not "what is this?", ask "what is this <u>like</u>" – Moshe Bar

- Exemplar Theory (Medin & Schaffer 1978, Nosofsky 1986, Krushke 1992)
 - –categories represented in terms of remembered objects (exemplars)
 - -Similarity is measured between input and all exemplars -*think* non-parametric density estimation
- Vanevar Bush (1945), <u>Memex</u> (MEMory EXtender)
 - -Inspired hypertext, WWW, Google...

Bush's Memex (1945)

- Store publications, correspondence, personal work, on microfilm
- Items retrieved rapidly using index codes
 - Builds on "rapid selector"
- Can annotate text with margin notes, comments
- Can construct a *trail* through the material and save it
 Roots of hypertext
- Acts as an external memory

- language
- geography
- •__

Image Understanding via Memex

Figure 1: The **Visual Memex** graph encodes object similarity (solid black edge) and spatial context (dotted red edge) between pairs of object exemplars. A spatial context feature is stored for each context edge. The Memex graph can be used to interpret a new image (left) by associating image segments with exemplars in the graph (orange edges) and propagating the information.

Torralba's Context Challenge

Torralba's Context Challenge

Slide by Antonio Torralba

Torralba's Context Challenge

Slide by Antonio Torralba

Our Challenge Setup

Figure 2: Torralba's Context Challenge: "How far can you go without running a local object detector?" The task is to reason about the identity of the hidden object (denoted by a "?") without local information. In our category-free Visual Memex model, object predictions are generated in the form of exemplar associations for the hidden object. In a category-based model, the category of the hidden object is directly estimated.

Malisiewicz & Efros, NIPS'09

Visual Memex: exemplars, non-parametric object-object relationships

• Recurse through the graph

Baseline: CoLA: categories, parametric objectobject relationships

Reduced Memex: categories, non-parametric relationships

Qual. results

Input Image + Hidden Region

Visual Memex Exemplar Predictions

Categorization Results

.....

.....

.....

Part 4: Limitations of Nearest Neighbors

Are we fooling ourselves?

- E.g. action recognition
 - Very hard to improve on single frame classifiers
 - Consider "opening fridge" action:

Dataset bias is a problem, but so is our complacency

example by David Fouhey

Thank You

© Quint Buchholz