A Millennium of Nearest Neighbor Methods

An Introduction to the NIPS Nearest Neighbor Workshop 2017

George Chen
Assistant Professor of Information Systems
Heinz College of Information Systems and Public Policy
Carnegie Mellon University

December 8, 2017
Alhazen
(~965 to ~1040)

Book of Optics
(~1010’s to ~1030’s*)

Historians give different dates…
Hence, when sight perceives some visible object, the faculty of discrimination immediately seeks its counterpart among the forms persisting in the imagination, and when it finds some form in the imagination that is like the form of that visible object, it will recognize that visible object and will perceive what kind of object it is

–Alhazen (translated; Smith 2001)

Reading further, Alhazen allows for a “reject” option if none of the training data are sufficiently similar

Alhazen
(~965 to ~1040)

(~1010’s to ~1030’s*)

Historians give different dates…
Alhazen: 1NN classifier with reject option (11th century)

Fix & Hodges: k-NN classifier consistency (1951)

Nadaraya, Watson separately: kernel regression (1964)

Watson: k-NN regression follows easily from Fix & Hodges (1964)

Levinthal: fixed-radius near neighbor search (1966)

Cover & Hart: 1-NN classifier error at most twice Bayes error (1967)

Chaudhuri & Dasgupta: most general nonasymptotic k-NN classification theory (2014)
k-NN Classification Guarantee

Theorem (Chaudhuri & Dasgupta 2014, informal)
Choose error tolerance $\delta \in (0, 1)$. # training data: n
With probability at least $1 - \delta$ over randomness in training data,

$$\mathbb{P}(k\text{-NN classifier}(X) \neq \text{Bayes classifier}(X)) \leq \delta + \mathbb{P}(X \text{ lands near decision boundary})$$

over randomness in feature vector X

- Subsumes previous asymptotic consistency results (Fix & Hodges 1951, Stone 1977, Devroye et al 1994)
- Achieves error lower bound under smoothness, margin condition (Audibert & Tsybakov 2007)

Proof ideas translate to fixed-radius NN classification
Proof ideas extend to k-NN, fixed-radius NN, and kernel regression to match existing sample complexity results (up to 1 log factor) (Chen & Shah 2018)
How does a practitioner make use of these results?

Example: in health care, number of training data often refers to number of human subjects in a study.

Clinician would benefit from relating this number to specific disease or treatment statistics (e.g., prob. of landing near decision boundary & Lipschitz constants don’t readily lend to clinical interpretation).
Toward more “user-friendly” guarantees: clustering structure

Application-specific clusters can be easier for practitioners to interpret
Time Series Forecasting

(Chen, Nikolov, Shah 2013)

Will a news topic on Twitter go viral?

June 2012 Tweet rate data from Twitter
Time Series Forecasting
(Chen, Nikolov, Shah 2013)

Will a news topic on Twitter go viral?

Observation: how news topics go viral forms clusters

June 2012 Tweet rate data from Twitter
Online Collaborative Filtering
(Bresler, Chen, Shah 2014)
How do we recommend items to users over time?
Observation: user ratings cluster into groups
(item ratings do as well!)
Patch-Based Image Segmentation
(Chen, Shah, Golland 2015)

Where is the liver?
Patch-Based Image Segmentation
(Chen, Shah, Golland 2015)

Where is the liver?
Patch-Based Image Segmentation
(Chen, Shah, Golland 2015)

Where is the liver?
Patch-Based Image Segmentation
(Chen, Shah, Golland 2015)

Is this pixel part of the liver or not?
Patch-Based Image Segmentation
(Chen, Shah, Golland 2015)

Is this pixel part of the liver or not?
Patch-Based Image Segmentation

(Chen, Shah, Golland 2015)

Patches in real images accurately modeled by a few clusters (Zoran & Weiss, 2011, 2012)

Is this pixel part of the liver or not?
Clustering Structure Enables Successful NN Prediction

Collect enough training data to see enough points from all clusters
Clusters should be sufficiently separated to combat noise

Time Series Forecasting
- i.i.d. training data
- distance not a metric

Online Collaborative Filtering
- choice of training data
- distance is noisy

Patch-Based Image Segmentation
- non i.i.d. training data

prediction over time
Chen, Nikolov, Shah 2013
Bresler, Chen, Shah 2014
Chen, Shah, Golland 2015
Explaining the Success of Nearest Neighbor Methods in Prediction

George H. Chen
Carnegie Mellon University
georgechen@cmu.edu

Devavrat Shah
MIT
devavrat@mit.edu
Monograph coverage

- Theory on NN regression
- Theory on NN classification
- Prediction guarantees in three modern applications using clustering structure
- (Approximate) NN search algorithms
- Decision trees and their ensemble variants are adaptive NN methods

Coming soon!
A neural algorithm for a fundamental computing problem

Sanjoy Dasgupta¹, Charles F. Stevens²,³, Saket Navlakha⁴,*

* See all authors and affiliations

Science 10 Nov 2017:
Vol. 358, Issue 6364, pp. 793-796
DOI: 10.1126/science.aam9868

Fly brain inspires computing algorithm

Flies use an algorithmic neuronal strategy to sense and categorize odors. Dasgupta et al.
Amazing lineup of speakers, applied and theoretical!